4.6 Article

Calcium-activated chloride channels anoctamin 1 and 2 promote murine uterine smooth muscle contractility

Journal

Publisher

MOSBY-ELSEVIER
DOI: 10.1016/j.ajog.2014.06.018

Keywords

anoctamin; calcium channels; contractility; myometrium; uterus

Funding

  1. National Institutes of Health [K08GM093137]

Ask authors/readers for more resources

OBJECTIVE: To determine the presence of calcium activated chloride channels anoctamin 1 (ANO1) and 2 (ANO2) in human and murine uterine smooth muscle (MUSM) and evaluate the physiologic role for these ion channels in murine myometrial contractility. STUDY DESIGN: We performed reverse transcription polymerase chain reaction to determine whether ANO1 and 2 are expressed in human and murine uterine tissue to validate the study of this protein in mouse models. Immunohistochemical staining of ANO1 and 2 was then performed to determine protein expression in murine myometrial tissue. The function of ANO1 and 2 in murine uterine tissue was evaluated using electrophysiologic studies, organ bath, and calcium flux experiments. RESULTS: ANO1 and 2 are expressed in human and MUSM cells. Functional studies show that selective antagonism of these channels promotes relaxation of spontaneous MUSM contractions. Blockade of ANO1 and 2 inhibits both agonist-induced and spontaneous transient inward currents and abolishes G-protein coupled receptor (oxytocin) mediated elevations in intracellular calcium. CONCLUSION: The calcium activated chloride channels ANO1 and 2 are present in human and murine myometrial tissue and may provide novel potential therapeutic targets to achieve effective tocolysis.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available