4.5 Article

Extracellular matrix, Rac1 signaling, and estrogen-induced proliferation in MCF-7 breast cancer cells

Journal

BREAST CANCER RESEARCH AND TREATMENT
Volume 110, Issue 2, Pages 257-268

Publisher

SPRINGER
DOI: 10.1007/s10549-007-9719-0

Keywords

breast cancer; cyclin D1; estrogen; estrogen receptor; extracellular matrix; laminin; MCF-7; Rac1

Categories

Ask authors/readers for more resources

Estrogen receptor positive (ER+), estrogen (E) responsive MCF-7 breast cancer cells cultured on the extracellular matrix (ECM) protein laminin (LM), exhibit significantly reduced E-induced proliferation compared with cells cultured on collagen I (Col I) that is not due to a loss of ER. Based on reported differences in integrin-activated pathways on Col I vs. LM, we investigated the potential role of Rac1/c-jun-N-terminal kinase (JNK) activation and downstream regulation of cyclin D1 by E on Col I vs.LM. E-induced proliferation was increased on LM in MCF-7 cells expressing constitutively active Rac1 (CA Rac1) and decreased in dominant negative Rac1-(DN Rac1) expressing cells on Col I. siRNA knockdown established the specificity and requirement for Rac1 activation for E-induced regulation of cyclin D1. More robust c-Jun activation occurred on Col I than on LM and E-induced proliferation was abolished after treatment with a JNK inhibitor. These results provide evidence that Rac1/JNK/c-Jun activation promotes E-induced proliferation on Col I and reduced Rac1/JNK/c-Jun activation on LM contributes significantly to reduced E-induced proliferation in MCF-7 cells on LM. These results identify a novel role for extracellular matrix (ECM)-integrin regulation of Rac1-JNK pathway in E-regulated proliferation in ER+ breast cancer cells. These findings suggest that tumor stromal environment, i.e., ECM composition, may contribute to loss of E regulation in ER+ breast cancers. Defining molecular markers for early identification of ER+ tumors that are ER+ but antiestrogen resistant would allow the design and use of alternative therapies to inhibit tumor growth and improve survival.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available