4.7 Article

The effect of surface properties of polycrystalline, single phase metal coatings on bacterial retention

Journal

INTERNATIONAL JOURNAL OF FOOD MICROBIOLOGY
Volume 197, Issue -, Pages 92-97

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.ijfoodmicro.2014.12.030

Keywords

Food; Metals; Surface topography; Bacterial retention; Physicochemistry; Chemistry

Funding

  1. Danish Research Council for Technology and Production Science [274-08-0291]

Ask authors/readers for more resources

In the food industry microbial contamination of surfaces can result in product spoilage which may lead to potential health problems of the consumer. Surface properties can have a substantial effect on microbial retention. The surface characteristics of chemically different coatings (Cu, Ti, Mo, Ag, Fe) were defined using white light profilometry (micro-topography and surface features), atomic force microscopy (nano-topography) and physicochemical measurements. The Ag coating had the greatest topography measurements and Fe and Mo the least. Mo was the most hydrophobic coating (lowest gamma(AB), gamma(+), gamma (-)) whilst Ag was the most hydrophilic (greatest gamma(AB), gamma(+), gamma(-)). The physicochemical results for the Fe, Ti and Cu coatings were found to lie between those of the Ag and Mo coatings. Microbiological retention assays were carried out using Listeria monocytogenes, Escherichia coil and Staphylococcus aureus in order to determine how surface properties influenced microbial retention. It was found that surface chemistry had an effect on microbial retention, whereas the shape of the surface features and nano-topography did not. L. monocytogenes and S. aureus retention to the surfaces were mostly affected by surface micro-topography, whereas retention of E. coli to the coatings was mostly affected by the coating physicochemistry. There was no trend observed between the bacterial cell surface physicochemistry and the coating physicochemistry. This work highlights that different surface properties may be linked to factors affecting microbial retention hence, the use of surface chemistry, topography or physicochemical factors alone to describe microbial retention to a surface is no longer adequate. Moreover, the effects of surface parameters on microbial retention should be considered individually for each bacterial genus. (C) 2015 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available