4.6 Article

Magnesium sulfate ameliorates maternal and fetal inflammation in a rat model of maternal infection

Journal

Publisher

MOSBY-ELSEVIER
DOI: 10.1016/j.ajog.2010.11.006

Keywords

chemokines; cytokines; fetal brain damage; GRO-KC; magnesium sulfate; maternal infection; MCP-1; neuroprotection; preterm labor

Funding

  1. Oxenhorn Family
  2. Feinstein Institute for Medical Research

Ask authors/readers for more resources

OBJECTIVE: Magnesium sulfate is proposed to have neuroprotective effects in the offspring. We examined the effects of maternal magnesium sulfate administration on maternal and fetal inflammatory responses in a rat model of maternal infection. STUDY DESIGN: Pregnant rats were injected with saline, Gram-negative bacterial endotoxin lipopolysaccharide or lipopolysaccharide with magnesium sulfate (pre- and/or after lipopolysaccharide) to mimic infection. Maternal blood, amniotic fluid, fetal blood, and fetal brains were collected 4 hours after lipopolysaccharide and assayed for tumor necrosis factor, interleukin-6, monocyte chemoattractant protein-1, and growth-related oncogene-KC. In addition, the effect of magnesium sulfate on cytokine production by an astrocytoma cell line was assessed. RESULTS: Lipopolysaccharide administration induced tumor necrosis factor, interleukin-6, monocyte chemoattractant protein-1, and growth-related oncogene-KC expression in maternal and fetal compartments. Maternal magnesium sulfate treatment significantly attenuated lipopolysaccharide-induced multiple proinflammatory mediator levels in maternal and fetal compartments. CONCLUSION: Antenatal magnesium sulfate administration significantly ameliorated maternal, fetal, and gestational tissue-associated inflammatory responses in an experimental model of maternal infection.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available