4.6 Article

Influences of tool pin profile and axial force on the formation of friction stir processing zone in AA6061 aluminium alloy

Journal

Publisher

SPRINGER LONDON LTD
DOI: 10.1007/s00170-007-1100-2

Keywords

AA6061 aluminium alloy; friction stir welding; axial force; tool pin profile; FSP zone; tensile properties

Ask authors/readers for more resources

AA6061 aluminium alloy (Al-Mg-Si alloy) has gathered wide acceptance in the fabrication of light weight structures requiring a high strength-to-weight ratio and good corrosion resistance. Compared to the fusion welding processes that are routinely used for joining structural aluminium alloys, the friction stir welding (FSW) process is an emerging solid state joining process in which the material that is being welded does not melt and recast. This process uses a non-consumable tool to generate frictional heat in the abutting surfaces. The welding parameters such as tool rotational speed, welding speed, axial force etc., and the tool pin profile plays a major role in deciding the weld quality. In this investigation an attempt has been made to understand the effect of axial force and tool pin profiles on FSP zone formation in AA6061 aluminium alloy. Five different tool pin profiles (straight cylindrical, tapered cylindrical, threaded cylindrical, triangular and square) have been used to fabricate the joints at three different axial force levels. The formation of FSP zone has been analysed macroscopically. Tensile properties of the joints have been evaluated and correlated with the FSP zone formation. From this investigation it is found that the square tool pin profile produces mechanically sound and metallurgically defect free welds compared to other tool pin profiles.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available