4.4 Article

Piezoelectric actuator design for ultrasonically assisted deep hole drilling

Journal

JOURNAL OF ELECTROCERAMICS
Volume 20, Issue 3-4, Pages 187-192

Publisher

SPRINGER
DOI: 10.1007/s10832-007-9132-4

Keywords

deep hole drilling; ultrasonically assisted machining; superimposed vibrations; model based design of piezoelectric transducers

Ask authors/readers for more resources

From different chipping machining processes it is known that a superposition of the cutting kinematics with additional vibration energy increases material removal rate and tool life. Concerning the deep drilling process in the scope of smallest diameters from 0.9 to 6 mm insights to this so called hybrid processes are still awaited. Preliminary investigations indicated that here is high, so far unused potential. The goal of current research is an increase in effectiveness of the deep hole drilling process by superimposing additional vibration energy in ultrasonic frequency range by means of a piezoelectric transducer and low-frequency vibrations in the range of acoustic frequencies as well. Positive effects can appear in a couple of areas, e.g. achievable surface quality, feeding force, drilling torque, shape and length of chips, feasibility of machining ceramic materials and tool wear. This paper describes mainly the ultrasound conform design of the vibration unit. Furthermore issues of contactless energy transfer into a rotating tool and model based design of piezoelectric transducers will be addressed.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available