4.5 Article Proceedings Paper

Histogram Analysis of MR Imaging-Derived Cerebral Blood Volume Maps: Combined Glioma Grading and Identification of Low-Grade Oligodendroglial Subtypes

Journal

AMERICAN JOURNAL OF NEURORADIOLOGY
Volume 29, Issue 9, Pages 1664-1670

Publisher

AMER SOC NEURORADIOLOGY
DOI: 10.3174/ajnr.A1182

Keywords

-

Ask authors/readers for more resources

BACKGROUND AND PURPOSE: Inclusion of oligodendroglial tumors may confound the utility of MR based glioma grading. Our aim was, first, to assess retrospectively whether a histogram-analysis method of MR perfusion images may both grade gliomas and differentiate between low-grade oligodendroglial tumors with or without loss of heterozygosity (LOH) on 1p/19q and, second, to assess retrospectively whether low-grade oligodendroglial subtypes can be identified in a population of patients with high-grade and low-grade astrocytic and oligodendroglial tumors. MATERIALS AND METHODS: Fifty-two patients (23 women, 29 men; mean age, 52 years; range, 19-78 years) with histologically confirmed gliomas were imaged by using dynamic susceptibility contrast MR imaging at 1.5T. Relative cerebral blood volume (rCBV) maps were created, and 4 neuroradiologists defined the glioma volumes independently. Averaged over the 4 observers, a histogram-analysis method was used to assess the normalized histogram peak height of the glioma rCBV distributions. RESULTS: Of the 52 patients, 22 had oligodendroglial tumors. The histogram method was able to differentiate high-grade gliomas (HGGs) from low-grade gliomas (LGGs) (Mann-Whitney U test, P < .001) and to identify low-grade oligodendroglial subtypes (P = .009). The corresponding intraclass correlation coefficients were 0.902 and 0.801, respectively, The sensitivity and specificity in terms of differentiating low-grade oligodendroglial tumors without LOH on 1p/19q from the other tumors was 100% (6/6) and 91 % (42/46), respectively. CONCLUSION: With histology as a reference, our results suggest that histogram analysis of MR imaging-derived rCEV maps can differentiate HGGs from LGGs as well as low-grade oligodendroglial subtypes with high interobserver agreement. Also, the method was able to identify low-grade oligodendroglial tumors without LOH on 1p/19q in a population of patients with astrocytic and oligodendroglial tumors.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available