4.5 Article

Kidney fibrosis in hypertensive rats: Role of oxidative stress

Journal

AMERICAN JOURNAL OF NEPHROLOGY
Volume 28, Issue 4, Pages 548-554

Publisher

KARGER
DOI: 10.1159/000115289

Keywords

hypertension; angiotensin II; oxidative stress; kidney fibrosis

Funding

  1. NHLBI NIH HHS [R01-HL077668] Funding Source: Medline
  2. NATIONAL HEART, LUNG, AND BLOOD INSTITUTE [R01HL077668] Funding Source: NIH RePORTER

Ask authors/readers for more resources

Fibrosis of the glomerulus and the tubulointerstitium occurs in patients with hypertension. Studies have shown that renal oxidative stress appears in hypertensive kidney disease. The potential role of oxidative stress in renal fibrogenesis remains to be elucidated. Herein, we tested the hypothesis that oxidative stress contributes to the development of renal fibrosis during hypertension. Sprague-Dawley rats received angiotensin II (AngII; 9 mu g/h s.c.) for 4 weeks with/without co-treatment of antioxidants, apocynin and tempol (120 mg/kg/day each, p.o.). Untreated rats served as controls. Appearance of renal oxidative stress and its effect on the expression of transforming growth factor (TGF)-beta 1, population of myofibroblasts, collagen synthesis/degradation and fibrosis in kidneys were examined. Chronic AngII infusion elevated systemic blood pressure (228 +/- 6 mm Hg), which was accompanied with extensive renal fibrosis and oxidative stress represented as upregulated NADPH oxidase and suppressed superoxide dismutase (SOD). Co-treatment with antioxidants led to: (1) markedly decreased renal NADPH oxidase; (2) significantly attenuated gene expression of TGF-beta 1, type I collagen, and tissue inhibitors of matrix metalloproteinase (TIMP)-I/-II in the kidney; (3) largely reduced population of myofibroblasts in both the cortex and medulla; (4) significantly reduced renal collagen volume, and (5) partially suppressed blood pressure (190 +/- 8 mm Hg). Thus, prolonged AngII administration promotes renal oxidative stress, which is associated with hypertensive renal disease. AngII induces renal oxidative stress by increasing NADPH oxidase and reducing SOD in the kidney, which, in turn, upregulates collagen synthesis, while suppressing collagen degradation, thereby promoting the development of fibrosis in kidneys of hypertensive rats. Copyright (C) 2008 S. Karger AG, Basel.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available