4.5 Article

Exploiting gene-environment independence for analysis of case-control studies: An empirical bayes-type shrinkage estimator to trade-off between bias and efficiency

Journal

BIOMETRICS
Volume 64, Issue 3, Pages 685-694

Publisher

WILEY
DOI: 10.1111/j.1541-0420.2007.00953.x

Keywords

case-only designs; gene-environment interaction; profile likelihood; retrospective analysis; semiparametrics

Ask authors/readers for more resources

Standard prospective logistic regression analysis of case-control data often leads to very imprecise estimates of gene-environment interactions due to small numbers of cases or controls in cells of crossing genotype and exposure. In contrast, under the assumption of gene-environment independence, modern retrospective methods, including the case-only approach, can estimate the interaction parameters much more precisely, but they can be seriously biased when the underlying assumption of gene-environment independence is violated. In this article, we propose a novel empirical Bayes-type shrinkage estimator to analyze case-control data that can relax the gene-environment independence assumption in a data-adaptive fashion. In the special case, involving a binary gene and a binary exposure, the method leads to an estimator of the interaction log odds ratio parameter in a simple closed form that corresponds to an weighted average of the standard case-only and case-control estimators. We also describe a general approach for deriving the new shrinkage estimator and its variance within the retrospective maximum-likelihood framework developed by Chatterjee and Carroll (2005, Biometrika 92, 399-418). Both simulated and real data examples suggest that the proposed estimator strikes a balance between bias and efficiency depending on the true nature of the gene-environment association and the sample size for a given study.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available