4.6 Article

Comparison of performances of several FACTS devices using Cuckoo search algorithm optimized 2DOF controllers in multi-area AGC

Journal

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.ijepes.2014.10.015

Keywords

Automatic generation control; Cuckoo search algorithm; FACTS controllers; 2DOE-IDD controller

Ask authors/readers for more resources

This paper presents automatic generation control (AGC) of three unequal area thermal systems with single reheat turbine and appropriate generation rate constraints (GRC) in each area. A two degree of freedom (2DOF) controller called 2DOE-integral plus double derivative (2DOE-IDD) is proposed for the first time in AGC as secondary controller. Secondary controller gains and other parameters are optimized simultaneously using a more recent evolutionary computational technique called Cuckoo Search algorithm (CS). The system dynamic responses for various 2DOF controllers such as 2DOE-PI, 2DOE-PID, and 2DOE-DD are compared. Investigations reveal that responses with 2DOE-IDD are better than others. Performance of several FACTS devices such as Static synchronous series compensator (SSSC), Thyristor controlled series capacitor (TCSC), Thyristor controlled phase shifter (TCPS), and Interline power flow controller (IPFC) in presence of 2DOE-IDD controller are compared and found that the dynamic responses with IPFC are better than others. For the first time in AGC, a case study is performed with placement of IPFC and observed that IPFC present in all three areas of the system performs better. Sensitivity analysis reveals that the CS optimized 2DOE-IDD controller parameters obtained in presence of IPFC in all three areas at nominal condition of loading and size of step load perturbation (SLP) are robust and need not be reset with wide changes in system loading and SLP. Also, the comparison of convergence curve of various algorithms reveals that CS algorithm converges much faster than others. (C) 2014 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available