4.3 Article

Antioxidant Treatment With Tempol and Apocynin Prevents Endothelial Dysfunction and Development of Renovascular Hypertension

Journal

AMERICAN JOURNAL OF HYPERTENSION
Volume 22, Issue 12, Pages 1242-1249

Publisher

OXFORD UNIV PRESS
DOI: 10.1038/ajh.2009.186

Keywords

-

Funding

  1. National Council of Scientific and Technological Development (CNPq)
  2. Rio de Janeiro State Research Agency (FAPERJ)

Ask authors/readers for more resources

BACKGROUND Two-kidney-one-clip (2K-1C) rats develop renovascular hypertension associated with endothelial dysfunction and elevated levels of oxidative stress. The role of oxidative damage is unknown in vascular dysfunction coupled with 2K-1C hypertension. The aims of this study were to evaluate the effects of chronic treatment with a superoxide dismutase (SOD) mimetic (tempol) and an inhibitor of nicotinamide adenine dinucleotide phosphate (NADPH)-dependent oxidase (apocynin) on the development of hypertension, endothelial dysfunction, and oxidative damage in 2K-1C rats. METHODS 2K-1C rats and sham-operated rats were treated with tempol or apocynin for 40 days, while the corresponding nontreated groups received tap water. Blood pressure (BP), mesenteric arterial plasma and mesentery oxidative damage, mesenteric protein expression, and antioxidant activities were compared among the four groups. RESULTS Chronic treatment with tempol (1 mol/l) apocynin (33 mu g/kg/day) impaired the development of hypertension in 2K-1C rats and did not change the BP in control animals. The reduction in vasodilatory effect induced by acetylcholine (ACh) in the mesenteric arterial beds (MABs) of 2K-1C rats was restored by tempol and apocynin. Plasma and mesentery levels of malondialdehyde (MDA) were higher in 2K-1C rats, and these levels were significantly reduced by the administration of tempol and apocynin. Mesenteric SOD activity and expression were higher in 2K-1C rats than in the controls, and treatment with tempol resulted in a reduction in SOD activity. CONCLUSIONS The data suggest that a compromised mechanism of antioxidant defense and an increase in oxidative damage contribute to the development of hypertension and associated vascular dysfunction in 2K-1C rats, and that tempol and apocynin prevent these effects.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available