4.7 Article

Epistatic Selection between Coding and Regulatory Variation in Human Evolution and Disease

Journal

AMERICAN JOURNAL OF HUMAN GENETICS
Volume 89, Issue 3, Pages 459-463

Publisher

CELL PRESS
DOI: 10.1016/j.ajhg.2011.08.004

Keywords

-

Funding

  1. Louis Jeantet Foundation
  2. Swiss National Science Foundation
  3. National Centers of Competence in Research Frontiers in Genetics (Swiss National Science Foundation)
  4. Academy of Finland
  5. Emil Aaltonen foundation

Ask authors/readers for more resources

Interaction (nonadditive effects) between genetic variants has been highlighted as an important mechanism underlying phenotypic variation, but the discovery of genetic interactions in humans has proved difficult. In this study, we show that the spectrum of variation in the human genome has been shaped by modifier effects of cis-regulatory variation on the functional impact of putatively deleterious protein-coding variants. We analyzed 1000 Genomes population-scale resequencing data from Europe (CEU [Utah residents with Northern and Western European ancestry from the CEPH collection]) and Africa (YRI [Yoruba in Madan, Nigeria]) together with gene expression data from arrays and RNA sequencing for the same samples. We observed an underrepresentation of derived putatively functional coding variation on the more highly expressed regulatory haplotype, which suggests stronger purifying selection against deleterious coding variants that have increased penetrance because of their regulatory background. Furthermore, the frequency spectrum and impact size distribution of common regulatory polymorphisms (eQTLs) appear to be shaped in order to minimize the selective disadvantage of having deleterious coding mutations on the more highly expressed haplotype. Interestingly, eQTEs explaining common disease GWAS signals showed an enrichment of putative epistatic effects, suggesting that some disease associations might arise from interactions increasing the penetrance of rare coding variants. In conclusion, our results indicate that regulatory and coding variants often modify the functional impact of each other. This specific type of genetic interaction is detectable from sequencing data in a genome-wide manner, and characterizing these joint effects might help us understand functional mechanisms behind genetic associations to human phenotypes including both Mendelian and common disease.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available