4.6 Article

Missense mutations in the ABCB6 transporter cause dominant familialpseudohyperkalemia

Journal

AMERICAN JOURNAL OF HEMATOLOGY
Volume 88, Issue 1, Pages 66-72

Publisher

WILEY-BLACKWELL
DOI: 10.1002/ajh.23357

Keywords

-

Categories

Funding

  1. Italian Ministero dell'Universita e della Ricerca (MIUR)
  2. Telethon (Italy) [GGP09044, MUR-PS 35-126/Ind]
  3. Regione Campania [DGRC 1901/200]
  4. Doris Duke Charitable Foundation

Ask authors/readers for more resources

Familial Pseudohyperkalemia (FP) is a dominant red cell trait characterized by increased serum [K+] in whole blood stored at or below room temperature, without additional hematological abnormalities. Functional gene mapping and sequencing analysis of the candidate genes within the 2q35q36 critical interval identifiedin 20 affected individuals among three multigenerational FP familiestwo novel heterozygous missense mutations in the ABCB6 gene that cosegregated with disease phenotype. The two genomic substitutions altered two adjacent nucleotides within codon 375 of ABCB6, a porphyrin transporter that, in erythrocyte membranes, bears the Langereis blood group antigen system. The ABCB6 R375Q mutation did not alter the levels of mRNA or protein, or protein localization in mature erythrocytes or erythroid precursor cells, but it is predicted to modestly alter protein structure. ABCB6 mRNA and protein levels increase during in vitro erythroid differentiation of CD34+ erythroid precursors and the erythroleukemia cell lines HEL and K562. These data suggest that the two missense mutations in residue 375 of the ABCB6 polypeptide found in affected individuals of families with chromosome 2-linked FP could contribute to the red cell K+ leak characteristic of this condition. Am. J. Hematol. 2013. (c) 2012 Wiley Periodicals, Inc.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available