4.6 Editorial Material

Invited Commentary: Efficient Testing of Gene-Environment Interaction

Journal

AMERICAN JOURNAL OF EPIDEMIOLOGY
Volume 169, Issue 2, Pages 231-233

Publisher

OXFORD UNIV PRESS INC
DOI: 10.1093/aje/kwn352

Keywords

-

Funding

  1. Intramural NIH HHS Funding Source: Medline
  2. NHLBI NIH HHS [R01 HL091172-01] Funding Source: Medline

Ask authors/readers for more resources

Gene-environment-wide interaction studies of disease occurrence in human populations may be able to exploit the same agnostic approach to interrogating the human genome used by genome-wide association studies. The authors discuss 2 methods for taking advantage of possible independence between a single nucleotide polymorphism they call G (a genetic factor) and an environmental factor they call E while maintaining nominal type I error in studying G-E interaction when information on many genes is available. The first method is a simple 2-step procedure for testing the null hypothesis of no multiplicative interaction against the alternative hypothesis of a multiplicative interaction between an E and at least one of the markers genotyped in a genome-wide association study. The added power for the method derives from a clever work-around of a multiple testing procedure. The second is an empirical-Bayes-style shrinkage estimation framework for G-E interaction and the associated tests that can gain efficiency and power when the G-E independence assumption is met for most G's in the underlying population and yet, unlike the case-only method, is resistant to increased type I error when the underlying assumption of independence is violated. The development of new approaches to testing for interaction is an example of methodological progress leading to practical advantages.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available