4.7 Article

Sensitivity of satellite observations for freshly produced lightning NOx

Journal

ATMOSPHERIC CHEMISTRY AND PHYSICS
Volume 9, Issue 3, Pages 1077-1094

Publisher

COPERNICUS GESELLSCHAFT MBH
DOI: 10.5194/acp-9-1077-2009

Keywords

-

Funding

  1. DFG (Deutsche Forschungsgemeinschaft, German research society)

Ask authors/readers for more resources

In this study, we analyse the sensitivity of nadir viewing satellite observations in the visible range to freshly produced lightning NOx. This is a particular challenge due to the complex and highly variable conditions of meteorology, (photo-) chemistry, and radiative transfer in and around cumulonimbus clouds. For the first time, such a study is performed accounting for photo- chemistry, dynamics, and radiative transfer in a consistent way: A one week episode in the TOGA COARE/CEPEX region (Pacific) in December 1992 is simulated with a 3-D cloud resolving chemistry model. The simulated hydrometeor mixing ratios are fed into a Monte Carlo radiative transfer model to calculate box-Air Mass Factors (box-AMFs) for NO2. From these box-AMFs, together with model NOx profiles, slant columns of NO2 (S-NO2), i.e. synthetic satellite measurements, are calculated and set in relation to the actual model NOx vertical column (V-NOx), yielding the sensitivity S-NO2/V-NOx. From this study, we find a mean sensitivity of 0.46. NOx below the cloud bottom is mostly present as NO2, but shielded from the satellites' view, whereas NOx at the cloud top or above is shifted to NO due to high photolysis and low temperature, and hence not detectable from space. However, a significant fraction of the lightning produced NOx in the middle part of the cloud is present as NO2 and has a good visibility from space. Due to the resulting total sensitivity being quite high, nadir viewing satellites provide a valuable additional platform to quantify NOx production by lightning; strong lightning events over clean regions should be clearly detectable in satellite observations. Since the observed enhancement of NO2 column densities over mesoscale convective systems are lower than expected for current estimates of NOx production per flash, satellite measurements can in particular constrain the upper bound of lightning NOx production estimates.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available