4.4 Article

Usefulness of Three-Dimensional Speckle Tracking Strain to Quantify Dyssynchrony and the Site of Latest Mechanical Activation

Journal

AMERICAN JOURNAL OF CARDIOLOGY
Volume 105, Issue 2, Pages 235-242

Publisher

EXCERPTA MEDICA INC-ELSEVIER SCIENCE INC
DOI: 10.1016/j.amjcard.2009.09.010

Keywords

-

Funding

  1. National Institutes of Health, Bethesda, Maryland [2 K24 HL004503-06]
  2. Toshiba Medical Corporation, Tokyo, Japan

Ask authors/readers for more resources

Previous methods to quantify dyssynchrony could not determine regional 3-dimensional (3-D) strain. We hypothesized that a novel 3-D speckle tracking strain imaging system can quantify left ventricular (LV) dyssynchrony and site of latest mechanical activation. We studied 64 subjects; 54 patients with heart failure were referred for cardiac resynchronization therapy (CRT) with an ejection fraction 25 +/- 6% and QRS interval 165 +/- 29 ms and 10 healthy volunteer controls. The 3-D speckle tracking system determined radial strain using a 16-segment model from a pyramidal 3-D dataset. Dyssynchrony was quantified as maximal opposing wall delay and SD in time to peak strain. The 3-D analysis was compared to standard 2-dimensional (2-D) strain datasets and site of 3-D latest mechanical activation, not possible by 2D was quantified. As expected, dyssynchrony in patients on CRT was significantly greater than in controls (maximal opposing wall delay 316 +/- 112 vs 59 +/- 12 ms and SD 124 +/- 48 vs 28 +/- 11 ms, p <0.001 vs normal). The 3-D opposing wall delay was closely correlated with 3-D 16-segment SD (r = 0.95) and 2-D mid-LV strain (r = 0.83) and SD (r = 0.85, all p values <0.001). The 3-D site of the latest mechanical activation was most commonly midposterior (26%), basal posterior (22%), midlateral (20%), and basal lateral (17%). Eleven patients studied after CRT demonstrated improvements in 3-D synchrony (300 +/- 124 to 94 +/- 37 ms) and ejection fraction (24 +/- 6% to 31 +/- 7%, p <0.05). In conclusion, 3-D speckle tracking can successfully quantify 3-D role in management of patients on CRT. (C) 2010 Elsevier Inc. All rights reserved. (Am J Cardiol 2010;105:235-242)

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available