4.6 Article

Phase estimation for thermal Gaussian states

Journal

PHYSICAL REVIEW A
Volume 79, Issue 3, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevA.79.033834

Keywords

Gaussian noise; optical losses; optical squeezing; phase estimation; quantum noise; thermal noise

Funding

  1. Spanish MICINN [FIS2005-01369]
  2. Generalitat de Catalunya CIRIT [2005SGR-00994]

Ask authors/readers for more resources

We give the optimal bounds on the phase-estimation precision for mixed Gaussian states in the single-copy and many-copy regimes. Specifically, we focus on displaced thermal and squeezed thermal states. We find that while for displaced thermal states an increase in temperature reduces the estimation fidelity, for squeezed thermal states a larger temperature can enhance the estimation fidelity. The many-copy optimal bounds are compared with the minimum variance achieved by three important single-shot measurement strategies. We show that the single-copy canonical phase measurement does not always attain the optimal bounds in the many-copy scenario. Adaptive homodyning schemes do attain the bounds for displaced thermal states, but for squeezed states they yield fidelities that are insensitive to temperature variations and are, therefore, suboptimal. Finally, we find that heterodyne measurements perform very poorly for pure states but can attain the optimal bounds for sufficiently mixed states. We apply our results to investigate the influence of losses in an optical metrology experiment. In the presence of losses squeezed states cease to provide the Heisenberg limited precision, and their performance is close to that of coherent states with the same mean photon number.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available