4.6 Article

Z-eigenvalue methods for a global polynomial optimization problem

Journal

MATHEMATICAL PROGRAMMING
Volume 118, Issue 2, Pages 301-316

Publisher

SPRINGER HEIDELBERG
DOI: 10.1007/s10107-007-0193-6

Keywords

Polynomial optimization; Supersymmetric tensor; Orthogonal transformation; Z-eigenvalue

Funding

  1. Natural Science Foundation of China [10771120]

Ask authors/readers for more resources

As a global polynomial optimization problem, the best rank-one approximation to higher order tensors has extensive engineering and statistical applications. Different from traditional optimization solution methods, in this paper, we propose some Z-eigenvalue methods for solving this problem. We first propose a direct Z-eigenvalue method for this problem when the dimension is two. In multidimensional case, by a conventional descent optimization method, we may find a local minimizer of this problem. Then, by using orthogonal transformations, we convert the underlying supersymmetric tensor to a pseudo-canonical form, which has the same E-eigenvalues and some zero entries. Based upon these, we propose a direct orthogonal transformation Z-eigenvalue method for this problem in the case of order three and dimension three. In the case of order three and higher dimension, we propose a heuristic orthogonal transformation Z-eigenvalue method by improving the local minimum with the lower-dimensional Z-eigenvalue methods, and a heuristic cross-hill Z-eigenvalue method by using the two-dimensional Z-eigenvalue method to find more local minimizers. Numerical experiments show that our methods are efficient and promising.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available