4.2 Article

Brain Microstructure Is Related to Math Ability in Children With Fetal Alcohol Spectrum Disorder

Journal

ALCOHOLISM-CLINICAL AND EXPERIMENTAL RESEARCH
Volume 34, Issue 2, Pages 354-363

Publisher

WILEY
DOI: 10.1111/j.1530-0277.2009.01097.x

Keywords

Mathematics; Arithmetic; Fetal Alcohol Spectrum Disorder; Diffusion Tensor Imaging; White Matter

Funding

  1. Centres of Excellence-Canadian Language and Literacy Research Network (CLLRNet)
  2. Alberta Heritage Foundation for Medical Research (AHFMR)
  3. Natural Sciences and Engineering Research Council (NSERC)

Ask authors/readers for more resources

Background: Children with fetal alcohol spectrum disorder (FASD) often demonstrate a variety of cognitive deficits, but mathematical ability seems to be particularly affected by prenatal alcohol exposure. Parietal brain regions have been implicated in both functional and structural studies of mathematical ability in healthy individuals, but little is known about the brain structure underlying mathematical deficits in children with FASD. The goal of this study was to use diffusion tensor imaging (DTI) to investigate the relationship between mathematical skill and brain white matter structure in children with FASD. Methods: Twenty-one children aged 5 to 13 years diagnosed with FASD underwent DTI on a 1.5-T MRI scanner and cognitive assessments including the Woodcock-Johnson Quantitative Concepts test. Voxel-based analysis was conducted by normalizing subject images to a template and correlating fractional anisotropy (FA) values across the brain white matter with age-standardized math scores. Results: Voxel-based analysis revealed 4 clusters with significant correlations between FA and math scores: 2 positively-correlated clusters in the left parietal region, 1 positively-correlated cluster in the left cerebellum, and 1 negatively-correlated cluster in the bilateral brainstem. Diffusion tractography identified the specific white matter tracts passing through these clusters, namely the left superior longitudinal fasciculus, left corticospinal tract and body of the corpus callosum, middle cerebellar peduncle, and bilateral projection fibers including the anterior and posterior limbs of the internal capsule. Conclusions: These results identify 4 key regions related to mathematical ability and provide a link between brain microstructure and cognitive skills in children with FASD. Given previous findings in typically developing children and those with other abnormal conditions, our results highlight the consistent importance of the left parietal area for mathematical tasks across various populations, and also demonstrate other regions that may be specific to mathematical processing in children with FASD.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.2
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available