4.2 Article

Environmental Modulation of Alcohol Intake in Hamsters: Effects of Wheel Running and Constant Light Exposure

Journal

ALCOHOLISM-CLINICAL AND EXPERIMENTAL RESEARCH
Volume 34, Issue 9, Pages 1651-1658

Publisher

WILEY
DOI: 10.1111/j.1530-0277.2010.01251.x

Keywords

Circadian; Ethanol; Exercise; Constant Light; Rhythm Splitting

Funding

  1. National Institute on Alcohol Abuse and Alcoholism [AA-015948]

Ask authors/readers for more resources

Background: Alcohol abuse leads to marked disruptions of circadian rhythms, and these disturbances in themselves can increase the drive to drink. Circadian clock timing is regulated by light, as well as by nonphotic influences such as food, social interactions, and wheel running. We previously reported that alcohol markedly disrupts photic and nonphotic modes of circadian rhythm regulation in Syrian hamsters. As an extension of this work, we characterize the hedonic interrelationship between wheel running and ethanol (EtOH) intake and the effects of environmental circadian disruption (long-term exposure to constant light [LL]) on the drive to drink. Methods: First, we tested the effect of wheel running on chronic free-choice consumption of a 20% (v/v) EtOH solution and water. Second, the effect of this alcohol drinking on wheel running in alcohol-naive animals was investigated. Third, we assessed the influence of LL, known to suppress locomotor activity and cause circadian rhythm disruption, on EtOH consumption and wheel-running behavior. Results: Inhibitory effects of wheel running on EtOH intake and vice versa were observed. Exposure to LL, while not affecting EtOH intake, induced rhythm splitting in 75% of the animals. Notably, the splitting phenotype was associated with lower levels of EtOH consumption and preference prior to, and throughout, the period of LL exposure. Conclusions: These results are evidence that exercise may offer an efficacious clinical approach to reducing EtOH intake. Also, predisposition for light-induced (or other) forms of circadian disruption may modulate the drive to drink.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.2
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available