4.6 Article

Dual-layer PBI/P84 hollow fibers for pervaporation dehydration of acetone

Journal

AICHE JOURNAL
Volume 58, Issue 4, Pages 1133-1145

Publisher

WILEY
DOI: 10.1002/aic.12625

Keywords

pervaporation dehydration; polybenzimidazole; dual-layer hollow fiber membrane; acetone; thermal treatment; crosslinking

Funding

  1. A-STAR
  2. NUS [R-279-000-288-305]

Ask authors/readers for more resources

Acetone dehydration via pervaporation is challenging, because acetone and water have close molecular sizes, and acetone has a much higher vapor pressure than water. Acetone is also a powerful solvent, which dissolves or swells most polymers. We have developed novel polybenzimidazole/BTDA-TDI/MDI (PBI/P84) dual-layer hollow fibers for pervaporation dehydration of acetone for industrial and biofuel separations. Both thermal and chemical crosslinking modifications were applied to the membranes to investigate their effectiveness to overcome acetone-induced swelling. Thermal treatment can effectively enhance separation performance, but performance stability can only be achieved through the crosslinking modification of PBI. Crosslinking by p-xylene dichloride followed by a thermal treatment above 250 degrees C show significant effectiveness to improve and stabilize pervaporation performance. The fractional free volume of the PBI selective layer reduces from 3.27 to 1.98% and 1.33%, respectively, after thermal treatment and a combination of chemical/thermal crosslinking modifications characterized by positron annihilation spectroscopy. (C) 2011 American Institute of Chemical Engineers AIChE J, 2012

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available