4.5 Article

Exact Shear-Lag Solution for Guided Waves Tuning with Piezoelectric-Wafer Active Sensors

Journal

AIAA JOURNAL
Volume 50, Issue 11, Pages 2285-2294

Publisher

AMER INST AERONAUTICS ASTRONAUTICS
DOI: 10.2514/1.J050667

Keywords

-

Funding

  1. National Science Foundation [CMS 0408578, CMMI 0925466]
  2. Div Of Civil, Mechanical, & Manufact Inn
  3. Directorate For Engineering [0925466] Funding Source: National Science Foundation

Ask authors/readers for more resources

This paper addresses some unresolved predictive modeling issues related to the use of piezoelectric-wafer active sensors for ultrasonic structural health monitoring. An exact model for the shear-lag transfer between the piezoelectric-wafer active sensor transducer and the structure in the presence of N generic guided wave modes is derived from first principles using the normal-mode expansion formulation. The resulting integral differential equation is solved using the variational iteration approach. The resulting solution is used to derive an improved model for the tuning between piezoelectric-wafer active sensor transducers and the multimodal guided waves used in ultrasonic structural-health-monitoring applications. The numerical predictions generated by the improved tuning model are compared with experimental results obtained through pitch catch experiments between two 7 mm piezoelectric-wafer active sensor transducers placed on a 1-mm 2024-T3 aluminum plate. The 10-700 kHz frequency range was explored. It was concluded that the improved model using the exact shear-lag solution matches much better the experimental results than previous models. Further theoretical and experimental work is warranted as a follow-up on the work reported in this paper to study the accuracy and convergence properties of the solution, to explore experimental comparison beyond the A1-mode cutoff frequency, and to extend the approach to layered structures and composite materials.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available