4.4 Article

Effects of shade on arbuscular mycorrhizal colonization and growth of crops and tree seedlings in Central India

Journal

AGROFORESTRY SYSTEMS
Volume 76, Issue 1, Pages 95-109

Publisher

SPRINGER
DOI: 10.1007/s10457-008-9182-x

Keywords

Agroforestry systems; Light regimes; Intercrops; Multipurpose trees; Arbuscular mycorrhiza; Mycorrhizal colonization

Ask authors/readers for more resources

The study was conducted to investigate the effects of different light intensities (25, 50, 67, and 100% of full sun [open]) on arbuscular mycorrhizal (AM) colonization and growth of two intercrops (a rainy season crop, Phaseolus mungo Roxb. var. PU-35 and a winter crop, Triticum aestivum L. var. WH-147) and seedlings of two multipurpose tree species (Eucalyptus tereticornis Sm. [Clone C-7, ITC, Bhadrachalam] and Albizia procera Benth.) of Central India. The results showed that various plant growth parameters viz., shoot length, dry weight and phosphorus (P) uptake were adversely affected by low light intensity. Inoculations with AM fungi (Acaulospora scrobiculata Trappe, Glomus intraradix Schenck & Smith and an unidentified Glomus species) increased the plant growth on account of all measured parameters under tested light conditions. Mycorrhizal efficiency of different AM fungi varied in narrow range. AM inoculants were more efficient at higher light intensity in above mentioned plant species, except wheat. Data on colonization of P. mungo, T. aestivum, E. tereticornis and A. procera showed that formation of arbuscules, vesicles and sporocarp was delayed by lower light intensity. Colonization index of host roots and spore counts increased with increase in light intensity during successive months after inoculation. Data on effect of light regimes on microclimate of net house showed that lux meter reading decreased as per grades of shading nets used during both rainy and winter seasons. With increase in light intensity, ambient temperature, soil surface temperature and sub surface temperature at 15 cm depth increased, except that the ambient and soil surface temperature in control (open) were slightly lower than net house observations during January and February. Value of ambient temperature varied in narrow range, with in treatments as compared to soil surface and sub soil surface temperature at 15 cm depth. Soil surface temperature at 25% of full sunlight was less than respective control values by 2-11A degrees C and sub soil temperature at 15 cm depth was less by 4-12A degrees C. The values of different microclimate parameters varied in narrower range during winter season as compared to rainy season. While ranking the importance of two factors studied-light and AM fungi-for their effect on the growth and P uptake by different plant species, inoculations with AM fungi came in the first place (explained 50-82% variation) and light substantially increased the values of R (2) in stepwise regression analysis (forward selection). The results suggest that AM inoculation may enhance the growth and P uptake of intercrops under tree shade and the tree canopy management is likely to increase the efficiency of AM inoculants in agroforestry systems. Use of excessive shading (25% of full sun or more) in nurseries may be avoided and PAR (photosynthetically active radiation) lamps may be used to increase growth and colonization index of tree seedlings.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available