4.7 Article

Impacts of cropping practices on yield-scaled greenhouse gas emissions from rice fields in China: A meta-analysis

Journal

AGRICULTURE ECOSYSTEMS & ENVIRONMENT
Volume 164, Issue -, Pages 220-228

Publisher

ELSEVIER
DOI: 10.1016/j.agee.2012.10.009

Keywords

Food security; Global warming; CH4; N2O; Rice cropping

Funding

  1. National Key Technology Support Program of China [2011BAD16B14]
  2. New Century Excellent Talents Program, China [NCET-05-0492]
  3. Chinese Clean Development Mechanism Project [1214012]

Ask authors/readers for more resources

Recently increasing studies suggest that a comprehensive assessment of cropping practices impacts on greenhouse gas (GHG) emissions at yield-scale will benefit cropping technique innovation and policy selection for higher-yield with less-emissions. In this paper, we conducted a meta-analysis to quantify the impacts of rice cropping practices on the global warming potential (GWP) of GHG emissions at yield-scale rather than area-scale in China. The results showed that the yield-scaled GWP of Chinese major rice cropping systems during rice growing season was in the order: double rice cropping system (1188.9 kg CO2 equiv.Mg-1) > rice-upland crop rotation system (777.0 kg CO2 equiv.Mg-1) > single rice cropping system (346.7 kg CO2 equiv.Mg-1). Nitrogen fertilization (50-300 kg N ha(-1)) significantly increased rice yield with slight increments in the GWP of CH4 and N2O emissions, resulting in significant reductions in the yield-scaled GWP. The greatest reduction occurred at the application rate of 150-200 kg N ha(-1) by 37% as compared to the non-fertilization control. For organic amendments, biogas residue application had no significant effect on the yield-scaled GWP, while manure application and straw recycling significantly increased the yield-scaled GWP by 54% and 154%, respectively. Intermittent irrigation significantly reduced yield-scaled GWP by 59% largely because of a significant reduction in CH4 emission and a significant increment in rice yield. No-tillage showed lower CH4 emission with similar rice yield in comparison with the conventional tillage, resulting in a reduction in yield-scaled GWP by 20%. These results indicate that there is a great potential to meet the new objective of higher-yield with less-GHG emissions through innovating rice cropping technique. More efforts should be paid on the field observations of GHG emissions during non-rice growing season, so as to perform a life-cycling assessment of GHG emissions from rice fields at yield scale under different cropping systems. (C) 2012 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available