4.6 Article

Primal-dual subgradient methods for convex problems

Journal

MATHEMATICAL PROGRAMMING
Volume 120, Issue 1, Pages 221-259

Publisher

SPRINGER HEIDELBERG
DOI: 10.1007/s10107-007-0149-x

Keywords

Convex optimization; Subgradient methods; Non-smooth optimization; Minimax problems; Saddle points; Variational inequalities; Stochastic optimization; Black-box methods; Lower complexity bounds

Ask authors/readers for more resources

In this paper we present a new approach for constructing subgradient schemes for different types of nonsmooth problems with convex structure. Our methods are primal-dual since they are always able to generate a feasible approximation to the optimum of an appropriately formulated dual problem. Besides other advantages, this useful feature provides the methods with a reliable stopping criterion. The proposed schemes differ from the classical approaches (divergent series methods, mirror descent methods) by presence of two control sequences. The first sequence is responsible for aggregating the support functions in the dual space, and the second one establishes a dynamically updated scale between the primal and dual spaces. This additional flexibility allows to guarantee a boundedness of the sequence of primal test points even in the case of unbounded feasible set (however, we always assume the uniform boundedness of subgradients). We present the variants of subgradient schemes for nonsmooth convex minimization, minimax problems, saddle point problems, variational inequalities, and stochastic optimization. In all situations our methods are proved to be optimal from the view point of worst-case black-box lower complexity bounds.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available