4.7 Article

Long-term, short-interval measurements of the frequency distributions of the photosynthetically active photon flux density and net assimilation rate of leaves in a cool-temperate forest

Journal

AGRICULTURAL AND FOREST METEOROLOGY
Volume 152, Issue -, Pages 1-10

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.agrformet.2011.08.001

Keywords

PPFD; Photosynthetic capacity; Leaf productivity; Forest understory; Light availability

Ask authors/readers for more resources

Long-term, short-interval measurements of incident photosynthetically active photon flux density (PPFD; mu mol m(-2) s(-1)) on the forest floor are essential for estimating the leaf carbon gain of understory plants. Such PPFD data, however, are scarce. We measured PPFD at 1-min intervals for more than 12 months in cool-temperate forest sites and reported the data as a PPFD frequency distribution. We chose five sites: an open site (OPN), the understory of a deciduous broad-leaved tree stand with no visible gaps (DCD), that of an evergreen conifer stand (EVG), that of a deciduous broad-leaved tree stand with a gap of approximately 80 m(2) (GAPDCD), and that of an evergreen conifer stand with a gap of approximately 100 m(2) (GAPEVG). DCD were divided into three sub sites (DCD1-3) to investigate variation within a small area. GAP-sites were consisted of two sub sites (GAPDCD1-2 and GAPEVG1-2) differing in the distance from the gap center. Using the PPFD data, we estimated the summer seasonal (May-October) net assimilation rate of leaves (NAR(L)) at each site for various photosynthetic capacities (A(max): mu mol m(-2) s(-1)) and other parameters of a light response curve of CO2 assimilation rates. At OPN, the average daily accumulated PPFD (mol m(-2) day(-1)) was highest in May (28.2) and lowest in December (8.2). Even at OPN, the class of instantaneous PPFD that contributed most to NAR(L) was 250-300 mu mol m(-2) s(-1). Such a large contribution of lower PPFD is suggested to be an important feature of a field light-availability. At DCD, the relative PPFD (RPPFD, %) to OPN was 7.2 during canopy closure and 49.4 after leaf shedding (averaged for 3 sites). EVG had the lowest light environment throughout the year. Its average RPPFD was 3%. For GAP sites, summer seasonal RPPFD (%) was 15.6, 18.8, 6.4 and 15.6 for GAPDCD1, GAPDCD2, GAPEVG1 and GAPEVG2, respectively. At OPN, the NAR(L) increased with A(max) (which ranged from 1 to 40), suggesting that plants at OPN do not maximize NAR(L). In contrast, at DCD and EVG, A(max) values were attained that did maximize NAR(L), suggesting that plants at these sites could maximize the NAR(L). A(max)-NAR(L) relationships for GAPDCD and GAPEVG showed similar trend to closed canopy sites, DCD and EVG, while NAR(L) and A(max)* of GAP sites were larger than at these sites. Among DCD1-3, the daily accumulated PPFD (mol m-2 day-1) averaged in summer ranged 1.3-1.8 and the maximum NAR(L) value differed up to 1.5 times. It indicates that A(max) and NAR(L) can be various among plants under a similar canopy conditions. (C) 2011 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available