4.6 Article

Dynamic cutting force modeling and experimental study of industrial robotic boring

Journal

Publisher

SPRINGER LONDON LTD
DOI: 10.1007/s00170-015-8166-z

Keywords

Industrial robotic boring; Dynamic cutting force; Aircraft intersection hole; Robotic machining system

Funding

  1. National Natural Science Foundation of China [51575479]
  2. Science Fund for Creative Research Groups of National Natural Science of Foundation of China [51221004]
  3. Fundamental Research Funds for the Central Universities [2014FZA4003]

Ask authors/readers for more resources

In this paper, a new approach based on industrial robotic boring is proposed to solve problems associated with intersection holes during aircraft assembly. A model is established to predict the dynamic cutting force of a robotic machining system. The robot stiffness coupling, chip deformation, and plowing interference affecting the cutting force are considered using the principles of cutting mechanics and the Oxley orthogonal cutting model. By solving a numerical solution of motion differential equation, the cutting force components in the radial, tangential, and feed directions are obtained by the model. In addition, an advanced curve intersection method is developed to identify the instantaneous uncut chip area and cutting edge contact length. Verification tests were performed on an ABB-IRB6600-175/2.55 robot for titanium alloy TC4 to determine the accuracy of the predictions. The results show that the simulated and measured cutting forces were in good agreement under different cutting conditions. By analyzing simulated and experimental results, we show that the model can be applied to predict the occurrence of vibration and has application value in terms of suppressing vibration during robotic boring.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available