4.7 Article

Human aging is characterized by focused changes in gene expression and deregulation of alternative splicing

Journal

AGING CELL
Volume 10, Issue 5, Pages 868-878

Publisher

WILEY
DOI: 10.1111/j.1474-9726.2011.00726.x

Keywords

aging; cell senescence; mRNA processing; gene expression; predictive model

Funding

  1. National Institute on Aging
  2. U.S. National Institutes of Health
  3. National Institute of Health Research (NIHR)

Ask authors/readers for more resources

Aging is a major risk factor for chronic disease in the human population, but there are little human data on gene expression alterations that accompany the process. We examined human peripheral blood leukocyte in-vivo RNA in a large-scale transcriptomic microarray study (subjects aged 30-104 years). We tested associations between probe expression intensity and advancing age (adjusting for confounding factors), initially in a discovery set (n = 458), following-up findings in a replication set (n = 240). We confirmed expression of key results by real-time PCR. Of 16 571 expressed probes, only 295 (2%) were robustly associated with age. Just six probes were required for a highly efficient model for distinguishing between young and old (area under the curve in replication set; 95%). The focused nature of age-related gene expression may therefore provide potential biomarkers of aging. Similarly, only 7 of 1065 biological or metabolic pathways were age-associated, in gene set enrichment analysis, notably including the processing of messenger RNAs (mRNAs); [P < 0.002, false discovery rate (FDR) q < 0.05]. This is supported by our observation of age-associated disruption to the balance of alternatively expressed isoforms for selected genes, suggesting that modification of mRNA processing may be a feature of human aging.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available