4.7 Article

Decrease in the osteocyte lacunar density accompanied by hypermineralized lacunar occlusion reveals failure and delay of remodeling in aged human bone

Journal

AGING CELL
Volume 9, Issue 6, Pages 1065-1075

Publisher

WILEY
DOI: 10.1111/j.1474-9726.2010.00633.x

Keywords

Aging; apoptosis; bone histomorphometry; electron microscopy; microanalysis; osteocyte death

Funding

  1. German Academic Exchange Service (DAAD)
  2. University Medical Center Hamburg-Eppendorf

Ask authors/readers for more resources

P>Aging decreases the human femur's fatigue resistance, impact energy absorption, and the ability to withstand load. Changes in the osteocyte distribution and in their elemental composition might be involved in age-related bone impairment. To address this question, we carried out a histomorphometric assessment of the osteocyte lacunar distribution in the periosteal and endosteal human femoral cortexes of 16 female and 16 male donors with regard to age- and sex-related bone remodeling. Measurements of the bone mineral density distribution by quantitative backscattered electron imaging and energy dispersive X-ray analysis were taken to evaluate the osteocyte lacunar mineral composition and characteristics. Age-dependent decreases in the total osteocyte lacunar number were measured in all of the cases. This change signifies a risk for the bone's safety. Cortical subdivision into periosteal and endosteal regions of interest emphasized that, in both sexes, primarily the endosteal cortex is affected by age-dependent reduction in number of osteocyte lacunae, whereas the periosteal compartment showed a less pronounced osteocyte lacunar deficiency. In aged bone, osteocyte lacunae showed an increased amount of hypermineralized calcium phosphate occlusions in comparison with younger cases. With respect to Frost's early delineation of micropetrosis, our microanalyses revealed that the osteocyte lacunae are subject to hypermineralization. Intralacunar hypermineralization accompanied by a decrease in total osteocyte lacunar density may contribute to failure or delayed bone repair in aging bone. A decreased osteocyte lacunar density may cause deteriorations in the canalicular fluid flow and reduce the detection of microdamage, which counteracts the bone's structural integrity, while hypermineralized osteocyte lacunae may increase bone brittleness and render the bone fragile.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available