4.6 Article

Quantum computation via measurements on the low-temperature state of a many-body system

Journal

PHYSICAL REVIEW A
Volume 80, Issue 3, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevA.80.032328

Keywords

-

Funding

  1. EPSRC
  2. Centre for Quantum Computer Technology
  3. Australian Research Council
  4. EPSRC [EP/C524640/1, EP/G016828/1, EP/F048300/1] Funding Source: UKRI
  5. Engineering and Physical Sciences Research Council [EP/F048300/1, EP/G016828/1, EP/C524640/1] Funding Source: researchfish

Ask authors/readers for more resources

We consider measurement-based quantum computation using the state of a spin-lattice system in equilibrium with a thermal bath and free to evolve under its own Hamiltonian. Any single qubit measurements disturb the system from equilibrium and, with adaptive measurements performed at a finite rate, the resulting dynamics reduces the fidelity of the computation. We show that it is possible to describe the loss in fidelity by a single quantum operation on the encoded quantum state that is independent of the measurement history. To achieve this simple description, we choose a particular form of spin-boson coupling to describe the interaction with the environment, and perform measurements periodically at a natural rate determined by the energy gap of the system. We found that an optimal cooling exists, which is a trade-off between keeping the system cool enough that the resource state remains close to the ground state, but also isolated enough that the cooling does not strongly interfere with the dynamics of the computation. For a sufficiently low temperature we obtain a fault-tolerant threshold for the couplings to the environment.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available