4.6 Article

Regulation of Dynamic Behavior of Retinal Microglia by CX3CR1 Signaling

Journal

INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE
Volume 50, Issue 9, Pages 4444-4451

Publisher

ASSOC RESEARCH VISION OPHTHALMOLOGY INC
DOI: 10.1167/iovs.08-3357

Keywords

-

Categories

Funding

  1. National Eye Institute Intramural Research Program
  2. Intramural Division of the National Eye Institute
  3. Howard Hughes Medical Institute

Ask authors/readers for more resources

PURPOSE. Microglia in the central nervous system display a marked structural dynamism in their processes in the resting state. This dynamic behavior, which may play a constitutive surveying role in the uninjured neural parenchyma, is also highly responsive to tissue injury. The role of CX3CR1, a chemokine receptor expressed in microglia, in regulating microglia morphology and dynamic behavior in the resting state and after laser-induced focal injury was examined. METHODS. Time-lapse confocal imaging of retinal explants was used to evaluate the dynamic behavior of retinal microglia labeled with green fluorescent protein (GFP). Transgenic mice in which CX3CR1 signaling was ablated (CX3CR1(GFP/GFP)/CX3CR1(-/-)) and preserved (CX3CR1(+/GFP)/CX3CR1(+/-)) were used. RESULTS. Retinal microglial density, distribution, cellular morphology, and overall retinal tissue anatomy were not altered in young CX3CR1(-/-) animals. In the absence of CX3CR1, retinal microglia continued to exhibit dynamic motility in their processes. However, rates of process movement were significantly decreased, both under resting conditions and in response to tissue injury. In addition, microglia migration occurring in response to focal laser injury was also significantly slowed in microglia lacking CX3CR1. CONCLUSIONS. CX3CR1 signaling in retinal microglia, though not absolutely required for the presence of microglial dynamism, plays a role in potentiating the rate of retinal microglial process dynamism and cellular migration. CX3CL1 signaling from retinal neurons and endothelial cells likely modulates dynamic microglia behavior so as to influence the level of microglial surveillance under basal conditions and the rate of dynamic behavior in response to tissue injury. (Invest Ophthalmol Vis Sci. 2009; 50: 4444-4451) DOI:10.1167/iovs.08-3357

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available