4.6 Article

Improvement of useful flow rate of grinding fluid with simulation schemes

Journal

Publisher

SPRINGER LONDON LTD
DOI: 10.1007/s00170-015-7864-x

Keywords

Scraper; Airbond layer; Grinding fluid; Useful flow rate; Useful flow; Fluid supply

Funding

  1. National Natural Science Foundation of China [51175276]
  2. Qingdao Science and Technology Program of Basic Research Projects [14-2-4-18-jch]
  3. Huangdao District Application Science and Technology Project [2014-1-55]

Ask authors/readers for more resources

In previous studies, the improvement of the useful flow and flow rate of grinding fluid has been investigated via modeling, simulation, and experiment. Optimized grinding parameters have been achieved. A detailed assessment of the improvement in the useful flow rate of grinding fluid, which optimizes the grinding fluid supply, has been published in the International Journal of Advanced Manufacturing Technology (Li et al. Int J Adv Manuf Technol 75:1587-1604, 2014). Then, a detailed experimental study on the improvement in the useful flow rate of grinding fluid has been published in the International Journal of Advanced Manufacturing Technology (Li et al. Int J Adv Manuf Technol 1-10. 2015), in which the influence of grinding wheel speed, grinding fluid jet velocity, particle size, and bulk porosity on useful flow and useful flow rate was analyzed. In this paper, a new method of air scraper is presented and simulated with focus on the air boundary layer and reflux around the grinding wheel. In view of the influence of the gas barrier of grinding wheels on the effective supply of grinding fluid, the effect of the scraper on the gas barrier layer was analyzed through the grinding flow field simulation under unified grinding parameters. Using the air scraper to destroy the gas barrier layer is proposed, and a supply scheme is designed to improve the useful flow rate. Results show that using the scraper has a certain effect on the weakening of the grinding gas barrier layer. In the grinding process, using the scraper can reduce the obstacles to grinding fluid supply, thereby improving the useful flow of grinding fluid into grinding wheel workpieces. The distance between the front end of the plane scraper and the grinding wheel is 10 mu m, with a large circular boot-shaped nozzle. Alternatively, the distance between the front end of the nozzle and the grinding wheel surface is 50 mu m, which can increase the useful rate of flow of grinding fluid.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available