4.5 Article

Robust blind image watermarking scheme based on Redundant Discrete Wavelet Transform and Singular Value Decomposition

Journal

Publisher

ELSEVIER GMBH
DOI: 10.1016/j.aeue.2012.06.008

Keywords

Image watermarking; Singular Value Decomposition; Redundant Discrete Wavelet; Geometrical attacks; Imperceptibility

Funding

  1. Ministry of Higher Education, Malaysia through Fundamental Research Grant Scheme [203/PELECT/6071135]

Ask authors/readers for more resources

Copyright protection and proof of ownership are two of the main important applications of the digital image watermarking. The challenges faced by researchers interested in digital image watermarking applications lie in the creation of new algorithms to serve those applications and to be resistant to most types of attacks, especially the geometrical attacks. Robustness, high imperceptibility, security, and large capacity are four essential requirements in any watermarking scheme. This paper presents a new image watermarking scheme based on the Redundant Discrete Wavelet Transform (RDWT) and the Singular Value Decomposition (SVD). The gray scale image watermark was embedded directly in the singular values of the RDWT sub-bands of the host image. The scheme achieved a large capacity due to the redundancy in the RDWT domain and at the same time preserved high imperceptibility due to SVD properties. Embedding the watermarking pixel's values without any modification inside the wavelet coefficient of the host image overcomes the security issue. Furthermore, the experimental results of the proposed scheme showed a high level of robustness not only against the image processing attacks but also against the geometrical attacks which are considered as difficult attacks to resist. (C) 2012 Elsevier GmbH. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available