4.7 Article

Thermo-mechanical buckling analysis of functionally graded plates with an elliptic cutout

Journal

AEROSPACE SCIENCE AND TECHNOLOGY
Volume 39, Issue -, Pages 250-259

Publisher

ELSEVIER FRANCE-EDITIONS SCIENTIFIQUES MEDICALES ELSEVIER
DOI: 10.1016/j.ast.2014.10.004

Keywords

Thermo-mechanical buckling; FG plates; Stability boundary; Elliptic cutout

Ask authors/readers for more resources

In this paper, buckling of functionally graded plates (FG plates) with an elliptical cutout under combined thermal and mechanical loads is investigated using Finite Element Method. Unlike other studies in which the plates are exposed to thermal or mechanical loads, in this study it is assumed that the mechanical and thermal loads are applied simultaneously. The material properties are assumed to vary across plate thickness according to power law distribution of the volume fraction of constituents. The plate formulation is based on the First order Shear Deformation Theory (FSDT) and element stiffness matrices are derived based on the principle of minimum potential energy. A flexible mesh generation algorithm is prepared in which the mesh density around the hole can be controlled easily. After validating the results of developed FE code with those available in the literature, the effect of boundary condition, plate aspect ratio and cutout radius ratio on thermo-mechanical buckling behavior of FG plates is studied and stability diagrams are presented. Finally useful conclusions are presented. (C) 2014 Elsevier Masson SAS. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available