4.7 Article

Identification of quantitative trait loci for resistance to shoot fly in sorghum [Sorghum bicolor (L.) Moench]

Journal

THEORETICAL AND APPLIED GENETICS
Volume 119, Issue 8, Pages 1425-1439

Publisher

SPRINGER
DOI: 10.1007/s00122-009-1145-8

Keywords

-

Funding

  1. Council of Scientific and Industrial Research (CSIR), New Delhi
  2. Department of Biotechnology (DBT), Government of India

Ask authors/readers for more resources

The shoot fly is one of the most destructive insect pests of sorghum at the seedling stage. Deployment of cultivars with improved shoot fly resistance would be facilitated by the use of molecular markers linked to QTL. The objective of this study was to dissect the genetic basis of resistance into QTL, using replicated phenotypic data sets obtained from four test environments, and a 162 microsatellite marker-based linkage map constructed using 168 RILs of the cross 296B (susceptible) x IS18551 (resistant). Considering five component traits and four environments, a total of 29 QTL were detected by multiple QTL mapping (MQM) viz., four each for leaf glossiness and seedling vigor, seven for oviposition, six for deadhearts, two for adaxial trichome density and six for abaxial trichome density. The LOD and R (2) (%) values of QTL ranged from 2.6 to 15.0 and 5.0 to 33%, respectively. For most of the QTL, IS18551 contributed resistance alleles; however, at six QTL, alleles from 296B also contributed to resistance. QTL of the related component traits were co-localized, suggesting pleiotropy or tight linkage of genes. The new morphological marker Trit for trichome type was associated with the major QTL for component traits of resistance. Interestingly, QTL identified in this study correspond to QTL/genes for insect resistance at the syntenic maize genomic regions, suggesting the conservation of insect resistance loci between these crops. For majority of the QTL, possible candidate genes lie within or very near the ascribed confidence intervals in sorghum. Finally, the QTL identified in the study should provide a foundation for marker-assisted selection (MAS) programs for improving shoot fly resistance in sorghum.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available