4.7 Article

Optimal design of composite lattice shell structures for aerospace applications

Journal

AEROSPACE SCIENCE AND TECHNOLOGY
Volume 13, Issue 4-5, Pages 157-164

Publisher

ELSEVIER FRANCE-EDITIONS SCIENTIFIQUES MEDICALES ELSEVIER
DOI: 10.1016/j.ast.2008.09.001

Keywords

Anisogrid; Stiffness; Optimization

Ask authors/readers for more resources

An optimization method for composite lattice shell structures under axially compressive loads is proposed aiming at the preliminary design. The method implements and improves some previous results of the fully analytical approach which is currently adopted at the state-of-the-art. The fully analytical approach provides the minimum mass solution under buckling and strength constraints, irrespective of other possible design limitations, such as, shell stiffness constraints. As a consequence, the minimum mass solution turns out to be satisfactory whereas other requirements are absent or automatically achieved but, on the contrary, it can drive the final preliminary configuration far from the real optimum. The proposed method implements numerical minimization allowing the designer to easily handle suboptimal configurations which are located in the vicinity of the minimum mass solution. When stiffness requirement is present (as in most cases) the benefit of this approach - in terms of weight saving with respect to the analytical design - is finally shown with a practical example. (C) 2008 Elsevier Masson SAS. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available