4.5 Article

Chemically Resolved Particle Fluxes Over Tropical and Temperate Forests

Journal

AEROSOL SCIENCE AND TECHNOLOGY
Volume 47, Issue 7, Pages 818-830

Publisher

TAYLOR & FRANCIS INC
DOI: 10.1080/02786826.2013.791022

Keywords

-

Funding

  1. NSF [ATM-0723582, ATM-0919189]
  2. DOE (BER, ASR Program) [DE-SC0006035, DE-FG02-11ER65293]
  3. UK Natural Environment Research Council [NE/E007309/1]
  4. FAPESP
  5. CNPq
  6. U.S. Department of Energy (DOE) [DE-SC0006035] Funding Source: U.S. Department of Energy (DOE)
  7. NERC [NE/E007309/1] Funding Source: UKRI
  8. Natural Environment Research Council [NE/E007309/1, ceh010023] Funding Source: researchfish
  9. Directorate For Geosciences
  10. Div Atmospheric & Geospace Sciences [0919189] Funding Source: National Science Foundation

Ask authors/readers for more resources

Chemically resolved submicron (PM1) particle mass fluxes were measured by eddy covariance with a high resolution time-of-flight aerosol mass spectrometer over temperate and tropical forests during the BEARPEX-07 and AMAZE-08 campaigns. Fluxes during AMAZE-08 were small and close to the detection limit (<1ng m(-2) s(-1)) due to low particle mass concentrations (<1g m(-3)). During BEARPEX-07, concentrations were five times larger, with mean mid-day deposition fluxes of -4.8ng m(-2) s(-1) for total nonrefractory PM1 (V-ex,V-PM1 = -1mm s(-1)) and emission fluxes of +2.6ng m(-2) s(-1) for organic PM1 (V-ex,V-org = +1mm s(-1)). Biosphere-atmosphere fluxes of different chemical components are affected by in-canopy chemistry, vertical gradients in gas-particle partitioning due to canopy temperature gradients, emission of primary biological aerosol particles, and wet and dry deposition. As a result of these competing processes, individual chemical components had fluxes of varying magnitude and direction during both campaigns. Oxygenated organic components representing regionally aged aerosol deposited, while components of fresh secondary organic aerosol (SOA) emitted. During BEARPEX-07, rapid in-canopy oxidation caused rapid SOA growth on the timescale of biosphere-atmosphere exchange. In-canopy SOA mass yields were 0.5-4%. During AMAZE-08, the net organic aerosol flux was influenced by deposition, in-canopy SOA formation, and thermal shifts in gas-particle partitioning. Wet deposition was estimated to be an order of magnitude larger than dry deposition during AMAZE-08. Small shifts in organic aerosol concentrations from anthropogenic sources such as urban pollution or biomass burning alters the balance between flux terms. The semivolatile nature of the Amazonian organic aerosol suggests a feedback in which warmer temperatures will partition SOA to the gas-phase, reducing their light scattering and thus potential to cool the region. Copyright 2013 American Association for Aerosol Research

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available