4.5 Article

Fluxes of Fine Particles Over a Semi-Arid Pine Forest: Possible Effects of a Complex Terrain

Journal

AEROSOL SCIENCE AND TECHNOLOGY
Volume 47, Issue 8, Pages 906-915

Publisher

TAYLOR & FRANCIS INC
DOI: 10.1080/02786826.2013.800940

Keywords

-

Funding

  1. United States-Israel Binational Science Foundation (BSF), Jerusalem, Israel [2008146]
  2. Helen and Martin Kimmel Award for Innovative Investigation
  3. Dr. Scholl Center for Water and Climate Research

Ask authors/readers for more resources

Semi-arid forests are of growing importance due to expected ecosystem transformations following climatic changes. Dry deposition of atmospheric aerosols was measured for the first time in such an ecosystem, the Yatir forest in southern Israel. Size-segregated flux measurements for particles ranging between 0.25m and 0.65m were taken with an optical particle counter (OPC) using eddy covariance methodology. The averaged deposition velocity (V-d ) at this site was 3.8 +/- 4.5mm s(-1) for 0.25-0.28m particles, which is in agreement with deposition velocities measured in mid and northern latitude coniferous forests, and is most heavily influenced by the atmospheric stability and turbulence conditions, and to a lesser degree by the particle size. Both downward and upward fluxes were observed. Upward fluxes were not associated with a local particle source. The flux direction correlated strongly with wind direction, suggesting topographical effects. We hypothesize that a complex terrain and a patchy fetch affected the expected dependence of V-d on particle size and caused the observed upward fluxes of particles. The effect of topography on the deposition velocity grows greater as particle size increases, as has been shown in modeling and laboratory studies but had not been demonstrated yet in field studies. This hypothesis is consistent with the observed relationship between V-d and the friction velocity, the topography in the area of the flux tower, and the observed correlation of flux direction with wind direction. [Supplementary materials are available for this article. Go to the publisher's online edition of Aerosol Science and Technology to view the free supplementary files.] Copyright 2013 American Association for Aerosol Research

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available