4.5 Article

The Influence of Relative Humidity on Nanoparticle Concentration and Particle Mass Distribution Measurements by the MOUDI

Journal

AEROSOL SCIENCE AND TECHNOLOGY
Volume 45, Issue 5, Pages 596-603

Publisher

TAYLOR & FRANCIS INC
DOI: 10.1080/02786826.2010.551557

Keywords

-

Funding

  1. Taiwan EPA [EPA-97-U1U1-02-106, EPA-98-U1U1-02-103]
  2. Taiwan National Science Council [NSC 98-2221-E-009-020-MY3]

Ask authors/readers for more resources

A humidity control system was operated upstream of two collocated-MOUDIs (micro-orifice uniform deposit impactors) for sampling ambient aerosol particles. One MOUDI used silicone-grease-coated aluminum foils (ALs) as the impaction substrates and was considered as the reference impactor, while the other used uncoated ALs or uncoated Teflon filters (TFs) as the impaction substrates for quantifying the effect of different relative humidities (RHs) and impaction substrates on the PM0.1 concentrations and mass distributions of ambient PMs. Test results showed that decreasing RH in general increased particle bounce from uncoated substrates with the bounce from uncoated ALs being more severe than that from uncoated TFs. Particle bounce did not influence the overall mass distribution of ambient fine particles when RH ranged between 40% and 80%, whereas it led to undersampling of particles greater than 2.5 mu m in aerodynamic diameter severely. Oversampling of PM0.1 occurred by as much as 95%-180% or 25%-55% when the MOUDI used uncoated ALs or TFs, respectively, as RH was reduced from 50% to 25%. Particle bounce was found to be negligible, and PM0.1 and PM2.5 could be sampled accurately with less than 5% error at the RH of 75%-80% or 65%-80% when uncoated ALs or TFs were used, respectively.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available