4.5 Article

Antimicrobial Air Filtration Using Airborne Sophora Flavescens Natural-Product Nanoparticles

Journal

AEROSOL SCIENCE AND TECHNOLOGY
Volume 45, Issue 12, Pages 1510-1518

Publisher

TAYLOR & FRANCIS INC
DOI: 10.1080/02786826.2011.602763

Keywords

-

Funding

  1. Converging Research Center
  2. Ministry of Education, Science and Technology [2010K001141]

Ask authors/readers for more resources

We investigated nanoparticle generation from a natural plant extract using the aerosol technique of the nebulization-thermal drying process, and tested its usefulness for antimicrobial air filtration. Sophora flavescens Ait. ethanolic extract was prepared as an antimicrobial natural-product suspension. Suspension droplets were generated using a single-jet Collison nebulizer, passed through an active carbon absorber to remove ethanol, and mixed and dried with sheath air. For drying, natural-product particles were exposed to 200 degrees C for similar to 1 s. Finally, particles were introduced into a scanning mobility particle sizer, and their size distribution and morphology were analyzed. For application of natural-product particles to antimicrobial air filtration, the nanosized particles generated were deposited continuously onto air filter medium at various times. Physical characteristics (filtration efficiency, pressure drop, and fiber morphology by scanning electron microscopy), and biological characteristics (antimicrobial tests against Staphylococcus epidermidis, Bacillus subtilis, and Escherichia coli bioaerosols) were then evaluated. We also analyzed the chemical composition of particles deposited on the filter surface. The results showed that the nanoparticles generated were spherical and demonstrated a polydisperse size distribution, ranging from several tens to several hundred nanometers. Although the filter pressure drop increased with the amount of nanoparticle on the filter, the bioaerosol filtration efficiency and antimicrobial activity were enhanced. In particular, the S. flavescens natural-product nanoparticle-deposited filters were more effective for removal of Gram-positive than Gram-negative bioaerosols. These results are promising for the implementation of this new technology for control of air quality against hazardous bioaerosols.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available