4.5 Article

Inter-Comparison of a Fast Mobility Particle Sizer and a Scanning Mobility Particle Sizer Incorporating an Ultrafine Water-Based Condensation Particle Counter

Journal

AEROSOL SCIENCE AND TECHNOLOGY
Volume 43, Issue 4, Pages 364-373

Publisher

TAYLOR & FRANCIS INC
DOI: 10.1080/02786820802662939

Keywords

-

Funding

  1. Canadian Foundation for Climate and Atmospheric Sciences (CFCAS)
  2. Ontario Ministry of the Environment
  3. TSI

Ask authors/readers for more resources

An Ultrafine Water-based Condensation Particle Counter (UWCPC), a Scanning Mobility Particle Sizer (SMPS) incorporating an UWCPC, and a Fast Mobility Particle Sizer (FMPS) were deployed to determine the number and size distribution of ultrafine particles. Comparisons of particle number concentrations measured by the UWCPC, SMPS, and FMPS were conducted to evaluate the performance of the two particle sizers using ambient particles as well as lab generated artificial particles. The SMPS number concentration was substantially lower than the FMPS (FMPS/SMPS = 1.56) measurements mainly due to the diffusion losses of particles in the SMPS. The diffusion loss corrected SMPS (C-SMPS) number concentration was on average 15% higher than the FMPS data (FMPS/C-SMPS = 0.87). Good correlation between the C-SMPS and FMPS was also observed for the total particle number concentrations in the size range 6 nm to 100 nm measured at a road-side urban site (r2 = 0.91). However, the particle size distribution measured by the C-SMPS was quite different from the size distribution measured by the FMPS. An empirical correction factor for each size bin was obtained by comparing the FMPS data to size-segregated UWCPC number concentrations for atmospheric particles. The application of the correction factor to the FMPS data (C-FMPS) greatly improved the agreement of the C-SMPS and C-FMPS size distributions. The agreement of the total particle concentrations also improved to well within 10% (C-FMPS/C-SMPS = 0.95).

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available