4.5 Article

Uncertainty Budget of the SMPS-APS System in the Measurement of PM1, PM2.5, and PM10

Journal

AEROSOL SCIENCE AND TECHNOLOGY
Volume 43, Issue 11, Pages 1130-1141

Publisher

TAYLOR & FRANCIS INC
DOI: 10.1080/02786820903204078

Keywords

-

Ask authors/readers for more resources

The effects of particulate matter on environment and public health have been widely studied in recent years. In spite of the presence of numerous studies about this topic there is no agreement on the relative importance of the particles' size and origin with respect to health effects among researchers. Nevertheless, air quality standards are moving, as the epidemiological attention, towards greater focus on the smaller particles. The most reliable method used in measuring particulate matter (PM) is the gravimetric method since it directly measures PM concentration, guaranteeing an effective traceability to international standards. This technique, however, neglects the possibility to correlate short term intraday atmospheric parameter variations that can influence ambient particle concentration and size distribution as well as human activity patterns. Besides, a continuous method to determine PM concentrations through the measurement of the number size distribution is the system constituted by a Scanning Mobility Particle Sizer (SMPS) and an Aerodynamic Particle Sizer (APS). In this article, the evaluation of the uncertainty budget in measuring PM through the SMPS-APS system, as well as a metrological comparison with the gravimetric reference method in order to analyze the compatibility, was carried out and applied with reference to an experimental campaign developed in a rural site. This choice allowed to assume the hypothesis of spherical particle morphology. The average PM10, PM2.5, and PM1 uncertainties obtained for the SMPS-APS system are equal to 27%, 29%, and 31%, respectively. Here the principle influence parameter is the particle density that has to be directly measured with low uncertainty in order to reduce the PM uncertainty.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available