4.6 Article

How to perform the most accurate possible phase measurements

Journal

PHYSICAL REVIEW A
Volume 80, Issue 5, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevA.80.052114

Keywords

Heisenberg model; Mach-Zehnder interferometers; optical variables measurement; phase measurement; quantum computing; quantum optics

Ask authors/readers for more resources

We present the theory of how to achieve phase measurements with the minimum possible variance in ways that are readily implementable with current experimental techniques. Measurements whose statistics have high-frequency fringes, such as those obtained from maximally path-entangled (vertical bar N,0 >>+vertical bar 0,N >>)/2 (NOON) states, have commensurately high information yield (as quantified by the Fisher information). However, this information is also highly ambiguous because it does not distinguish between phases at the same point on different fringes. We provide schemes to eliminate this phase ambiguity in a highly efficient way, providing phase estimates with uncertainty that is within a small constant factor of the Heisenberg limit, the minimum allowed by the laws of quantum mechanics. These techniques apply to NOON state and multipass interferometry, as well as phase measurements in quantum computing. We have reported the experimental implementation of some of these schemes with multipass interferometry elsewhere. Here, we present the theoretical foundation and also present some additional experimental results. There are three key innovations to the theory in this paper. First, we examine the intrinsic phase properties of the sequence of states (in multiple time modes) via the equivalent two-mode state. Second, we identify the key feature of the equivalent state that enables the optimal scaling of the intrinsic phase uncertainty to be obtained. This enables us to identify appropriate combinations of states to use. The remaining difficulty is that the ideal phase measurements to achieve this intrinsic phase uncertainty are often not physically realizable. The third innovation is to solve this problem by using realizable measurements that closely approximate the optimal measurements, enabling the optimal scaling to be preserved. We consider both adaptive and nonadaptive measurement schemes.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available