4.5 Article

An ultrafine, water-based condensation particle counter and its evaluation under field conditions

Journal

AEROSOL SCIENCE AND TECHNOLOGY
Volume 42, Issue 10, Pages 862-871

Publisher

TAYLOR & FRANCIS INC
DOI: 10.1080/02786820802339579

Keywords

-

Funding

  1. Office of Science (BER), U.S. Department of Energy [DE-GF02-05ER63997]
  2. National Science Foundation Award [ATM0506674]
  3. California Air Resources Board ICAT program [04-03]

Ask authors/readers for more resources

An ultrafine, water-based condensation particle counter (U-WCPC, TSI Model 3786) has been compared to a butanol-based ultrafine counter (U-BCPC, TSI Model 3025) for measurement of atmospheric and freeway-tunnel aerosols. The U-WCPC utilizes a warm, wet-walled growth tube to activate and grow particles through water condensation in a laminar-flow. It has an aerosol sampling rate of 0.3 L/min, and a nominal detection limit near 3 nm. Several field comparisons were made to the butanol-based instrument with the same nominal detection limit. For measurements of size-selected aerosols with diameters of 5 nm and larger the two instruments generally agreed, with a mean response within 5%. At 3 nm particle size differences were observed, and these differences varied with the data set. Measurements of ambient aerosol in Boulder, Colorado showed higher counting efficiency at 3 nm with the U-BCPC, while in a California freeway tunnel the opposite trend was observed, with higher counting efficiencies at 3 nm observed by the U-WCPC. For direct measurement of atmospheric aerosols, the two types of instruments yielded equivalent concentrations, independent of particle number concentration.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available