4.3 Article

Predicting low-velocity impact damage in composites by a quasi-static load model with cohesive interface elements

Journal

AERONAUTICAL JOURNAL
Volume 116, Issue 1186, Pages 1367-1381

Publisher

ROYAL AERONAUTICAL SOC
DOI: 10.1017/S0001924000007685

Keywords

-

Funding

  1. China AVIC
  2. China Scholarship Council

Ask authors/readers for more resources

A numerical model is developed for predicting low-velocity impact damage in laminated composites. Stacked shell elements are employed to model laminate plies with discrete interface elements in pre-determined zones to model the onset and propagation of matrix cracks and delamination. These interface elements are governed by a bi-linear cohesive failure law. Cohesive element zone size is determined by a separate finite element analysis using solid elements to identify the stress concentration sites. In order to save the computational effort, low-velocity impact load is modelled by quasi-static loading. Influence of contact force induced friction on shear driven mode II delamination is modelled by a friction model. For a clustered cross-ply laminate, calculated impact force and damage area are in good agreement with the test results. It is shown that matrix cracks should be included in the model in order to simulate delamination in adjacent interface. The practical outcome of this research is a validated modelling approach that can be further improved for predicting low-velocity impact damage in other stacking sequences.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available