4.6 Article

A machine learning approach to crater detection from topographic data

Journal

ADVANCES IN SPACE RESEARCH
Volume 54, Issue 11, Pages 2419-2429

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.asr.2014.08.018

Keywords

Crater detection algorithm; Topographic data; Machine learning; AdaBoost; Martian surface

Funding

  1. National Natural Science Foundation of China [41002120, 41171355]

Ask authors/readers for more resources

Craters are distinctive features on the surfaces of most terrestrial planets. Craters reveal the relative ages of surface units and provide information on surface geology. Extracting craters is one of the fundamental tasks in planetary research. Although many automated crater detection algorithms have been developed to exact craters from image or topographic data, most of them are applicable only in particular regions, and only a few can be widely used, especially in complex surface settings. In this study, we present a machine learning approach to crater detection from topographic data. This approach includes two steps: detecting square regions which contain one crater with the use of a boosting algorithm and delineating the rims of the crater in each square region by local terrain analysis and circular Hough transform. A new variant of Haar-like features (scaled Haar-like features) is proposed and combined with traditional Haar-like features and local binary pattern features to enhance the performance of the classifier. Experimental results with the use of Mars topographic data demonstrate that the developed approach can significantly decrease the false positive detection rate while maintaining a relatively high true positive detection rate even in challenging sites. (C) 2014 COSPAR. Published by Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available