4.6 Article

An overview of radar soundings of the martian ionosphere from the Mars Express spacecraft

Journal

ADVANCES IN SPACE RESEARCH
Volume 41, Issue 9, Pages 1335-1346

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.asr.2007.01.062

Keywords

Mars ionosphere; ionosphere radar sounding; Mars

Ask authors/readers for more resources

The Mars Express spacecraft carries a low-frequency radar called MARSIS (Mars Advanced Radar for Subsurface and Ionosphere Sounding) that is designed to study the subsurface and ionosphere of Mars. In this paper, we give an overview of the ionospheric sounding results after approximately one year of operation in orbit around Mars. Several types of ionospheric echoes are commonly observed. These include vertical echoes caused by specular reflection from the horizontally stratified ionosphere; echoes from a second layer in the topside ionosphere, possibly associated with O+ ions; oblique echoes from upward bulges in the ionosphere; and, a variety of other echoes that are poorly understood. The vertical echoes provide electron density profiles that are in reasonable agreement with the Chapman photo-equilibrium model of planetary ionospheres. On the dayside of Mars the maximum electron density is approximately 2 x 10(5) cm(-3). On the nightside the echoes are often very diffuse and highly irregular, with maximum electron densities less than 104 cm(-3). Surface reflections are sometimes observed in the same frequency range as the diffuse echoes, suggesting that small isolated holes exist in the nightside ionosphere, possibly similar to those that occur on the nightside of Venus. The oblique echoes arise from upward bulges in the ionosphere in regions where the crustal magnetic field of Mars is strong and nearly vertical. The bulges tend to be elongated in the horizontal direction and located in regions between oppositely directed arch-like structures in the crustal magnetic field. The nearly vertical magnetic field lines in the region between the arches are thought to connect into the solar wind, thereby allowing solar wind electrons to heat the lower levels of the ionosphere, with an attendant increase in the scale height and electron density. (C) 2007 COSPAR. Published by Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available