4.6 Article

Spatial and temporal resolution of millennial scale geomagnetic field models

Journal

ADVANCES IN SPACE RESEARCH
Volume 41, Issue 1, Pages 57-69

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.asr.2007.03.094

Keywords

geomagnetic field model; dipole moment; archaeomagnetism

Ask authors/readers for more resources

We assess the resolution and reliability of CALS7xK, a recently developed family of global geomagnetic field models. CALS7xK are derived from archaeo- and palaeomagnetic data and provide a convenient temporally varying spherical harmonic description of field behaviour back to 5000 BC. They can be used for a wide range of studies from gaining a better understanding of the geodynamo in the Earth's core to enabling the efficient determination of the influence of the geomagnetic field on cosmogenic nuclide productions rates. The models are similar in form to those derived from modern satellite observations, observatory and historical data, and used for the International Geomagnetic Reference Field, but their spatial and temporal resolution are limited by data quality and distribution. We find that spatial power is fully resolved only up to spherical harmonic degree 4 and temporal resolution is of the order of 100 years. Significant end effects associated with the temporal development in natural B-splines affect some features of the models in both the earliest and most recent century. Uncertainties in model predictions of declination, inclination and field intensity in general are smaller than 2 degrees and 1.5 mu T respectively, but can be as large as 8 degrees and 5 mu T for certain regions and times. The resolution studies are complemented by a detailed presentation of dipole moment and dipole tilt as predicted by the model CALS7K.2. These largest scale features are resolved more reliably than complex details of the field structure and are useful, for example, in studies of geomagnetic cutoff rigidities of cosmogenic isotopes. (C) 2007 COSPAR. Published by Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available