4.7 Article

An equivalent multiscale method for 2D static and dynamic analyses of lattice truss materials

Journal

ADVANCES IN ENGINEERING SOFTWARE
Volume 75, Issue -, Pages 14-29

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.advengsoft.2014.04.006

Keywords

Multiscale computational method; Dynamic analysis; Lattice truss materials; Multiscale base functions; Continuum model; Mode base function

Funding

  1. National Natural Science Foundation of China [11232003, 91315302]
  2. Ph.D. Programs Foundation of Ministry of Education of China [20130041110050]
  3. 111 Project [B08014]
  4. National Key Basic Research Special Foundation of China [2010CB832704]
  5. China Postdoctoral Science Foundation [2014M552078]

Ask authors/readers for more resources

A uniform multiscale computational method is developed for 2D static and dynamic analyses of lattice truss materials in elasticity based on the extended multiscale finite element method. A kind of multi-node coarse element is proposed to describe the more complex deformations compared with the original four-node coarse element and the mode base functions are added into the original multiscale base functions to consider the effects of inertial forces for the dynamic problems. The constructions of the displacement and mode base functions are introduced in detail. In addition, the orthogonality of the displacement and mode base functions are also proved, which indicates that the macroscopic displacement DOF and modal DOF are irrelevant and independent of each other. Finally, some numerical experiments are carried out to verify the validity and efficiency of the proposed method by comparison with the reference solution obtained by the standard finite element method on the fine mesh. (C) 2014 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available