4.7 Article Proceedings Paper

Continuous flow structuring of anisotropic biopolymer particles

Journal

ADVANCES IN COLLOID AND INTERFACE SCIENCE
Volume 150, Issue 1, Pages 16-26

Publisher

ELSEVIER
DOI: 10.1016/j.cis.2009.05.005

Keywords

Capillary instability; Microstructure; Interfacial rheology; Microfluidics; Encapsulation; Deborah number

Ask authors/readers for more resources

We review concepts and provide examples for the controlled structuring of biopolymer particles in hydrodynamic flow fields. The structuring concepts are grouped by the physical mechanisms governing drop deformation and shaping: (i) capillary structuring, (ii) shear and elongational structuring and (iii) confined flow methods. Non-spherical drops can be permanently structured if a solidification process, such as gelation or glass formation in the bulk or at the interface, is superimposed to the flow field. The physical and engineering properties of these processes critically depend on an elaborate balance between capillary phenomena, rheology, gel or glass formation kinetics, and bulk heat, mass and momentum transfer in multiphase fluids. This overview is motivated by the potential of non-spherical suspension particles, in particular those formed from 'natural' and 'sustainable' biopolymers, as rheology modifiers in food materials, consumer products, cosmetics or pharmaceuticals. (C) 2009 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available